Teaching Machine Learning Workshop at ECML 2021


  1. Content
  2. Important dates
  3. About this workshop
  4. Motivation
  5. Topics Covered
    1. Proceedings and Paper Format
    2. Paper Submission
    3. Paper Reviews
  6. Questions, Concerns or Feedback

Important dates

  • May 05, 2021: Paper submissions open
  • Jun 23, 2021: Paper submissions due
  • Jul 21, 2021: Paper decisions
  • Aug 18, 2021: Camera ready due
  • Sep 01, 2021: all papers online
  • Sep 08, 2021: satellite event virtual
  • Sep 13, 2021: day of the workshop (paper presentations and discussion) virtual

About this workshop

Machine Learning based approaches have become ubiquitous in many areas of society, industry and academia. Understanding what Machine Learning (ML) is providing and reproducing what it infers, has become an essential prerequisite for adoption. In this line of thought, course materials, introductory media and lecture series of a broad variety, depth, and quality are public availability. To this date and the best our knowledge, there is no structured approach to collect and discuss best practices in teaching Machine Learning. This workshop strives to change this.

With our workshop, we want to start an academic discussion on best practices. We would like to help improve existing material as a community and make conceiving new material more effective. We are very happy that this idea was approved for ECML PKDD 2021 workshop programme. Like ECML PKDD 2021, Teaching ML 2021 will be a virtual event.


Many experts and practitioners who develop Machine Learning models or infrastructure around these models are confronted with the opportunity to teach Machine Learning at some point in their career. Traditionally, many rely on their gut feeling to design courses that are motivated by these circumstances. The methods of choice are often PowerPoint or similar technologies.

This workshop targets those who would like to know, how teachers from around the globe approach teaching Machine Learning: How deep do they dive into the matter? What mental models do they use to visualize concepts? What media is at play in teaching ML by others?

With this workshop, we hope that all participants obtain a better feeling where they stand with their teaching and how they can improve or collaborate with others.

Topics Covered

The main goal of this workshop is to motivate and nourish best practices at any stage of the teaching process. For this, we would like to cover a structured approach to teaching motivated by the carpentries or a variation thereof. We believe that the core concepts contained in this are helpful for any teaching practitioners.

The central activity of the workshop will be twofold:

  1. a call-for-papers whereby teaching professionals or beginners are asked to describe their method of choice when teaching a given ML topic. We like to attract at maximum 4-page long mini-articles (excluding references and acknowledgements) that present or discuss a teaching activity related to machine learning. For more details, see below.

  2. presentations of 5-7 minute lightning talks of all accepted papers

Proceedings and Paper Format

All papers will be published in with Proceedings of Machine Learning Research. The papers must be written in English and formatted according to the ICML 2021 latex template.

The maximum length of papers is 4 pages (excluding references and acknowledgements) in this format. The program chairs reserve the right to reject any over-length papers without review. Papers that ‘cheat’ the page limit by, including but not limited to, using smaller than specified margins or font sizes will also be treated as over-length. Note that for example negative vspaces are also not allowed.

Additional materials (e.g. proofs, audio, images, video, data, or source code) can be provided as URLs inside the paper of your submission. The reviewers and the program committee reserve the right to judge the paper solely based on the 4 pages; looking at any additional material is at the discretion of the reviewers and is not required.

We strive to pursue a double-blind review process. All papers need to be ‘best-effort’ anonymized. We strongly encourage to also make code and data available anonymously (e.g., in an anonymous git repository or Dropbox folder). It is allowed to have a (non-anonymous) pre-print online, but it should not be cited in the submitted paper to preserve anonymity. Reviewers will be asked not to search for them.

Paper Submission

We invite interested authors to submit their article on openreview.net here.

Paper Reviews

We will conduct an open double-blinded peer-review using openreview.net on all contributions and select contributions based on the reviewers’ feedback. Here are the important dates:

  • May 5, 2021: Submission opens
  • June 23, 2021: Submission Deadline (no submissions past this date)
  • July 21, 2021: Paper Confirmations

Each submitted paper will be reviewed publicly by at least two experienced machine learning instructors.

Call for Reviewers: If you’d like to help out reviewing papers, please let us know and open an issue here or contact us.

Questions, Concerns or Feedback

We are happy to hear from you regarding your questions, concerns or feedback. Please do so by opening an issue here or contact us.

Session Chair

Katherine M. Kinnaird

Clare Boothe Luce Assistant Professor Department of Computer Science and Program in Statistical & Data Sciences Smith College

Peter Steinbach

Team Lead AI Consultants for Matter Research at Helmholtz-Zentrum Dresden-Rossendorf

Oliver Guhr

Research fellow at the HTW Dresden in the department of artificial intelligence.


More information about the registration process will be published soon.