Teaching Machine Learning Workshop at ECML-PKDD 2020


  1. Content
  2. About this workshop
  3. Motivation
  4. Programme
    1. Preface Satellite Event - September 8, 2020
    2. The Workshop - September 14, 2020
  5. Topics Covered
    1. Accepted Papers
    2. Proceedings and Paper Format
    3. Paper Reviews
  6. Questions, Concerns or Feedback

About this workshop

Machine Learning based approaches have become ubiquitous in many areas of society, industry and academia. Understanding what Machine Learning (ML) is providing and reproducing what it infers, has become an essential prerequisite for adoption. In this line of thought, course materials, introductory media and lecture series of a broad variety, depth, and quality are public availability. To this date and the best our knowledge, there is no structured approach to collect and discuss best practices in teaching Machine Learning. This workshop strives to change this.

With our workshop, we want to start an academic discussion on best practices. We would like to help improve existing material as a community and make conceiving new material more effective. We are very happy that this idea was approved for ECML PKDD 2020 workshop programme.


Many experts and practitioners who develop Machine Learning models or infrastructure around these models are confronted with the opportunity to teach Machine Learning at some point in their career. Traditionally, many rely on their gut feeling to design courses that are motivated by these circumstances. The methods of choice are often PowerPoint or similar technologies.

This workshop targets those who would like to know, how teachers from around the globe approach teaching Machine Learning: How deep do they dive into the matter? What mental models do they use to visualize concepts? What media is at play in teaching ML by others?

With this workshop, we hope that all participants obtain a better feeling where they stand with their teaching and how they can improve or collaborate with others.


Preface Satellite Event - September 8, 2020

To prepare for the workshop, we plan one online event with talks before the conference. See the agenda below. All times are in the CEST timezone.

Time/CEST Title Material Speaker
9am Welcome   Organizers
9.10am Didactics of Data Video Slides Rebecca Fiebrink
9.50am Experiences in Lectures Video Slides Heidi Seibold, Bernd Bischl
10.30am Experiences in Bootcamps/Compact Courses Video Slides Anne Fouillioux, Peter Steinbach

The Workshop - September 14, 2020

Participants of the workshop session will be motivated to provide feedback to their peers. Depending on the number of submissions, we will divide the presentations based on the field they focus on: vision applications, language applications, general concepts etc. Each of these working groups is asked to collect general patterns on what works and what doesn’t. After this session, we will compile a report to summarize and publish the findings of this event and to lay the foundation for future activities. See the agenda below. All times are in the CEST timezone.

Please see this etherpad for the details and schedule of the workshop.

Time/CEST Title Speaker
@home Online Paper Presentations Nicole Coleman & Claudia Engel, Katherine M. Kinnaird
09.00 am Welcome Organizers
09.15 am Paper Presentations All Authors
10.05 am Coffee break  
10.25 am Workshop (Remote) All
12.00 pm Lunch  
01.00 pm Wrap-Up Session All
01.30 pm Farewell and Next Steps Organizers
01.45 pm End  

Please note that this will be a virtual workshop only using the zoom video conferencing utlity. The connection details are:

Topic: ECMLPKDD 2020 Teaching Machine Learning Workshop
Time: Sep 14, 2020 09:00 AM Amsterdam, Berlin, Rome, Stockholm, Vienna

Join Zoom Meeting

Meeting ID: 871 1362 1879
One tap mobile
+496938079883,,87113621879# Germany
+496950502596,,87113621879# Germany

Dial by your location
        +49 69 3807 9883 Germany
        +49 695 050 2596 Germany
        +49 69 7104 9922 Germany
        +49 30 5679 5800 Germany
        +1 301 715 8592 US (Germantown)
        +1 312 626 6799 US (Chicago)
        +1 346 248 7799 US (Houston)
        +1 646 558 8656 US (New York)
        +1 669 900 9128 US (San Jose)
        +1 253 215 8782 US (Tacoma)
Meeting ID: 871 1362 1879
Find your local number: https://us02web.zoom.us/u/keudG8EVrK

Topics Covered

The main goal of this workshop is to motivate and nourish best practices at any stage of the teaching process. For this, we would like to cover a structured approach to teaching motivated by the carpentries or a variation thereof. We believe that the core concepts contained in this are helpful for any teaching practitioners.

The central activity of the workshop will be twofold:

  1. a call-for-papers whereby teaching professionals or beginners are asked to describe their method of choice when teaching a given ML topic. We like to attract at maximum 4-page long mini-articles (excluding references and acknowledgements) that present or discuss a teaching activity related to machine learning. For more details, see below.

  2. presentations of 5-7 minute lightning talks of all accepted papers during the workshop at ECML PKDD 2020

Accepted Papers

  • “Introductory Machine Learning for non STEM students” by Javier Garcia-Algarra, paper
  • “An Interactive Web Application for Decision Tree Learning” by Miriam Elia, Carola Gajek, Alexander Schiendorfer, Wolfgang Reif, paper
  • “Teaching Computational Machine Learning (without Statistics)” by Katherine M. Kinnaird, paper
  • “AI is not Just a Technology” by Claudia Engel, Nicole Coleman; paper
  • “Teaching the Foundations of Machine Learning with Candy” by Daniela Huppenkothen, Gwendolyn Eadie; paper
  • “Turning Software Engineers into Machine Learning Engineers” by Alexander Schiendorfer, Carola Gajek, Wolfgang Reif; paper

We would like to warmly thank all of our reviewers in alphabetical order:

Samujjwal Ghosh, Oliver Guhr, Hussain Kazmi, Katherine M. Kinnaird, Pujaa Rajan, Fabian Scheipl, Alexander Schiendorfer, Steve Schmerler, Heidi Seibold, Iram Shahzadi, Sebastian Starke, Peter Steinbach

Proceedings and Paper Format

All papers will be published in with Proceedings of Machine Learning Research. The papers must be written in English and formatted according to the ICML 2019 latex template.

The maximum length of papers is 4 pages (excluding references and acknowledgements) in this format. The program chairs reserve the right to reject any over-length papers without review. Papers that ‘cheat’ the page limit by, including but not limited to, using smaller than specified margins or font sizes will also be treated as over-length. Note that for example negative vspaces are also not allowed.

Additional materials (e.g. proofs, audio, images, video, data, or source code) can be provided as URLs inside the paper of your submission. The reviewers and the program committee reserve the right to judge the paper solely based on the 4 pages; looking at any additional material is at the discretion of the reviewers and is not required.

We strive to pursue a double-blind review process. All papers need to be ‘best-effort’ anonymized. We strongly encourage to also make code and data available anonymously (e.g., in an anonymous git repository or Dropbox folder). It is allowed to have a (non-anonymous) pre-print online, but it should not be cited in the submitted paper to preserve anonymity. Reviewers will be asked not to search for them.

Paper Reviews

We will conduct an open double-blinded peer-review using openreview.net on all contributions and select contributions based on the reviewers’ feedback. Here are the important dates:

  • April 27, 2020: Submission opens
  • June 26, 2020: Submission Deadline (no submissions past this date)
  • August 1, 2020: Paper Confirmations

Each submitted paper will be reviewed publicly by at least two experienced machine learning instructors. If you’d like to help out reviewing papers, please let us know and open an issue here or contact us.

Questions, Concerns or Feedback

We are happy to hear from you regarding your questions, concerns or feedback. Please do so by opening an issue here or contact us.

Session Chair

Bernd Bischl

Bernd holds the chair of Statistical Learning and Data Science at the LMU Munich

Heidi Seibold

Postdoc / Open Science Advocate

Peter Steinbach

Team Lead AI Consultants for Matter Research at Helmholtz-Zentrum Dresden-Rossendorf

Oliver Guhr

Research fellow at the HTW Dresden in the department of artificial intelligence.


More information about the registration process will be published soon.