Teaching Machine Learning Workshop at ECML 2022


  1. Content
  2. Important dates
  3. Programme
    1. Preface Satellite Event
    2. “MOOC Machine learning in python with scikit-learn” by David Arturo Amor Quiroz
  4. About this workshop
  5. Motivation
  6. Topics Covered
    1. Proceedings and Paper Format
    2. Paper Submission
    3. Paper Reviews
  7. Accepted Papers
    1. Reviewers
  8. Questions, Concerns or Feedback

Important dates

  • June 20, 2022: Paper submissions due
  • June 27, 2022: extended Paper submissions due
  • July 20, 2022: Paper decisions
  • Sep 06, 2022: Camera ready due (including video recording)
  • Sep 09, 2022: all papers online
  • TBA, 2022: satellite event virtual
  • Sep 23, 2022: day of the workshop (paper presentations as posters and coordinated discussions)


This workshop is currently planned as an hybrid event. We will use Zoom as our online conference service if not endorsed otherwise by the conference. We also plan to have conduct a physical event on site.

Preface Satellite Event

This will take place on September 13, 2022. The times and presenters are as follows. We will circulate the connection details in due course.

Time/CEST Title Speaker
2:45 pm Welcome and Housekeeping The Organizers
3:00 pm MOOC Machine learning in python with scikit-learn David Arturo Amor Quiroz
4:00 pm   Lorena Barba

“MOOC Machine learning in python with scikit-learn” by David Arturo Amor Quiroz

The MOOC “Machine learning in Python with scikit-learn” first aired in the spring 2021 and since then it has had two sessions with an average of 11,500 registered participants per session. In this talk we are going to discuss how the material can be used by teachers and students, as well as the technical and pedagogical choices and the general experience that the team have gained through the first 2 sessions.

The course is free of charge, requires no installation, includes final attestation and a discussion forum where the scikit-learn core developers were answering student’s questions. It offers a hands-on course with 7 modules (+ 1 introductory module), 15 video lessons, 70 programming notebooks, 26 quizzes, 7 wrap-up quizzes and 21 non-graded exercises. A static version of the course material is available on JupyterBook and the code can be found on GitHub where everybody can contribute.

About this workshop

Machine Learning based approaches have become ubiquitous in many areas of society, industry and academia. Understanding what Machine Learning (ML) is providing and reproducing what it infers, has become an essential prerequisite for adoption. In this line of thought, course materials, introductory media and lecture series of a broad variety, depth, and quality are public availability. To this date and the best our knowledge, there is no structured approach to collect and discuss best practices in teaching Machine Learning. This workshop strives to change this.

With our workshop, we want to perpetuate an academic discussion on best practices. We would like to help improve existing material as a community and make conceiving new material more effective. We are very happy that this idea was approved for ECML PKDD 2021 and ECML PKDD 2020 workshop programme. We hope to continue this in 2022.


Many experts and practitioners who develop Machine Learning models or infrastructure around these models are confronted with the opportunity to teach Machine Learning at some point in their career. Traditionally, many rely on their gut feeling to design courses that are motivated by these circumstances. The methods of choice are often PowerPoint or similar technologies.

This workshop targets those who would like to know, how teachers from around the globe approach teaching Machine Learning: How deep do they dive into the matter? What mental models do they use to visualize concepts? What media is at play in teaching ML by others?

With this workshop, we hope that all participants obtain a better feeling where they stand with their teaching and how they can improve or collaborate with others.

Topics Covered

The main goal of this workshop is to motivate and nourish best practices at any stage of the teaching process. For this, we would like to cover a structured approach to teaching motivated by the carpentries or a variation thereof. We believe that the core concepts contained in this are helpful for any teaching practitioners.

The central activity of the workshop will be twofold:

  1. a call-for-papers whereby teaching professionals or beginners are asked to describe their method of choice when teaching a given ML topic. We like to attract at maximum 4-page long mini-articles (excluding references and acknowledgements) that present or discuss a teaching activity related to machine learning. For more details, see below.

  2. accepted papers will be shared in a community connection session, where presenters and participants can discuss the papers. (This is like a poster session but without posters)

Proceedings and Paper Format

All papers will be published in with Proceedings of Machine Learning Research. The papers must be written in English and formatted according to the ICML 2021 latex template.

The maximum length of papers is 4 pages (excluding references and acknowledgements) in this format. The program chairs reserve the right to desk reject any over-length papers without review. Papers that ‘cheat’ the page limit by, including but not limited to, using smaller than specified margins or font sizes will also be treated as over-length. Note that for example negative \vspaces are also not allowed.

Additional materials (e.g. proofs, audio, images, video, data, or source code) can be provided as URLs inside the paper of your submission. The reviewers and the program committee reserve the right to judge the paper solely based on the 4 pages; looking at any additional material is at the discretion of the reviewers and is not required. In order not to undisclose the submitting author’s identity, please consider using tools like anonymous.4open.science.

We strive to pursue a double-blind review process. All papers need to be ‘best-effort’ anonymized. We strongly encourage to also make code and data available anonymously (e.g., in an anonymous git repository or Dropbox folder). It is allowed to have a (non-anonymous) pre-print online, but it should not be cited in the submitted paper to preserve anonymity. Reviewers will be asked not to search for them.

Paper Submission

For past content accepted at our workshop, please see the proceedings of 2021 and 2020. We are open to any submission aligned with the goals of our workshop. In 2022, we cordially encourage authors to focus on

  • in-depth discussions of teaching exerices
  • quantitive studies of learner progression
  • quantitive assessment of teaching exercises
  • in-depth discussions of data sets amendable for teaching ML
  • discussions of unplugged material that teaches ML without a computer
  • discussions on how to foster feedback between learners and instructors (perhaps in an automated fashion)
  • discussions on how to manage learner expectations prior to a course
  • comparing in-presence versus online teaching experiences

Please submit your papers on our openreview.net page. Should you encounter any problems, please reach out to us on our issue tracker or as described below.

Paper Reviews

We will conduct an open double-blinded peer-review using openreview.net on all contributions and select contributions based on the reviewers’ feedback. Here are the important dates:

  • May 13, 2022: Submission opens
  • June 20, 2022: Paper submissions due
  • July 13, 2022: Paper decisions

Each submitted paper will be reviewed publicly by at least two experienced machine learning instructors.

Accepted Papers

For past workshops, see the accepted papers in 2021 and 2020. All published papers are available on PMLR.


We are extremely grateful for the group of volunteers that make this event happen by providing their reviews to submitted papers in the last years. We hope to attract reviewers again this year. Should you be interested, please let us know and contact us as indicated below.

Questions, Concerns or Feedback

We are happy to hear from you regarding your questions, concerns or feedback. Please do so by opening an issue here or contact us.

Session Chair

Katherine M. Kinnaird

Clare Boothe Luce Assistant Professor Department of Computer Science and Program in Statistical & Data Sciences Smith College

Peter Steinbach

Team Lead AI Consultants for Matter Research at Helmholtz-Zentrum Dresden-Rossendorf

Oliver Guhr

Research fellow at the HTW Dresden in the department of artificial intelligence.


More information about the registration process will be published soon.